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Several approaches appear in literature in order to develop Computed-Aided-Diagnosis (CAD) systems

for Alzheimer’s disease (AD) detection. Although univariate models became very popular and nowadays

they are widely used, recent investigations are focused on multivariate models which deal with a whole

image as an observation. In this work, we compare two multivariate approaches that use different

methodologies to relieve the small sample size problem. One of them is based on Gaussian Mixture

Model (GMM) and models the Regions of Interests (ROIs) defined as differences between controls and

AD subject. After GMM estimation using the EM algorithm, feature vectors are extracted for each image

depending on the positions of the resulting Gaussians. The other method under study computes score

vectors through a Partial Least Squares (PLS) algorithm based estimation and those vectors are used as

features. Before extracting the score vectors, a binary mask based dimensional reduction of the input

space is performed in order to remove low-intensity voxels. The validity of both methods is tested on

the ADNI database by implementing several CAD systems with linear and nonlinear classifiers and

comparing them with previous approaches such as VAF and PCA.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s Disease (AD) is one of the most severe and
frequent neurodegenerative disorder in the elderly population
and has dramatic health consequences as well as socio-economic
implications. Furthermore, the incidence and prevalence of this
disease is increasing due to the growth of the older population in
developed nation.

Positron Emission Tomography (PET) is a non-invasive medical
imaging modality that provides 3D maps modeling the glucose
consumption rate of the brain. Since glucose consumption is
related to the brain activity, PET images can be used for diagnosing
several diseases, including AD. However, performing image classi-
fication via visual examination of these images can be subjective
and prone to errors. For this reason, in recent years many research
efforts have focused on developing a Computer-Aided Diagnosis
(CAD) system for AD based on medical imaging [1–4].
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The analysis of functional images using computers can be
performed at several scales. On the one hand, the most familiar
scale to the neuroimaging community concerns mass univariate
statistical testing, which models data at the scale of individual
voxel. In the early 2000s it was demonstrated [5] that a Statistical
Parametric Mapping (SPM) [6] model could be a suitable model to
describe the pattern of cerebral functional neurodegeneration.
Nevertheless SPM suffers the inconveniences of local and uni-
variate approaches and it was not developed specifically to study
a single image, but for comparing groups of images [7]. Subse-
quently, the sum of abnormal t-values obtained by SPM in regions
that were typically hypometabolic in AD has been proposed and
used as an AD indicator, with a high accuracy rate [8]. Further-
more a recent study has shown that a voxel-based analysis of 18
FDG-PET increases the diagnostic accuracy and confidence for
both AD and FrontoTemporal Dementia (FTD), particularly when
findings in a clinical evaluation are not definitive, and physicians
are not already highly confident with their clinical diagnosis [9].

On the other hand, multivariate approaches consider all voxels
of the brain as a single observation. Recent advances in statistical
classification and feature extraction techniques [10,11] have led
to an intensive use of those methods. In addition, multivariate
approaches are able to surmount the small sample size problem [12].
Most of these multivariate approaches use only a small set of
voxels or regions to distinguish between pathological and control
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Fig. 1. General diagram of the parts that compose a CAD system (multivariate

approach).
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images. One of the simplest multivariate approaches for developing a
CAD system for AD is the well-known Voxel-As Features (VAF)
method [7]. This method separates AD patients and controls by
means of a SVM classifier that is trained with all voxels (from SPECT
images) with intensity value above a given threshold. Despite its
simplicity, this method achieves results similar to other more
sophisticated methods. In [3] a PCA-based feature extraction method
is shown. The authors use the Fisher Discrimination Ratio to obtain
the most important components obtained by applying a PCA algo-
rithm to the functional images. Then, a Bayesian classifier is used to
distinguish between controls and AD patients. Other multivariate
approaches use some statistical measures as representation of the
brain images. In [13], a reduced map of the brain is computed as
the skewness of each m-by-m sliding block of the transaxial slices of
the original image. After that, the voxels which present an extreme
(very high or very low) Welch’s t-statistic between both classes
(controls and AD patients) are selected. The mean, standard devia-
tion, skewness and kurtosis are calculated for selected voxels and
these measures are chosen as features for three different classifiers:
SVM, Decision Trees and Multivariate Normal Model.

In this paper, we analyze two novel methods for extracting
relevant information from PET images in order to develop more
accurate CAD systems for AD. On the one hand we use the Gaussian
Mixture Model to parcel the Regions of Interests (ROIs) of the images.
Once each ROI has been modeled with a Gaussian (with a given
center, shape and weight) the feature vector for an image is computed
as the activation of each ROI in that image. On the other hand, we use
the score vectors computed by a Partial Least Squares (PLS) algorithm
as features vectors. This approach is similar to PCA since both use the
concept of latent variables, although PLS takes into account the image
labels for the score vector extraction and, for this reason, this method
obtains higher accuracy rates than PCA-based ones.

Fig. 1 shows a block diagram of a multivariate CAD system
architecture. It consists of three parts: (i) the preprocessing and
normalization methodology, (ii) the feature extraction technique
and (iii) and the classification algorithm. The goal of this paper is
to improve the feature extraction block in order to develop more
accurate CAD systems.
2. Feature extraction based on the Gaussian mixture model

2.1. Gaussian mixtures

GMMs are one of the most statistically mature methods for
classical clustering (see e.g. [14]), though they are also used
intensively for density estimation [15–17]. The basic assumption
of GMM for density estimation is that the given data xi, i¼ 1 . . .N
are drawn from a probability distribution pðxÞ, which is modeled
by a sum of k Gaussians

pðxÞ ¼
Xk

n ¼ 1

wnfnðx9ynÞ ð1Þ

where fnðx9ynÞ is the density of the Gaussian n with parameter
vector yn and the wn are weight factors or mixing proportions
with

P
nwn ¼ 1. The normal distributions fnðx9ynÞ in d dimensions

are given by

fnðx9ynAfln,RngÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞd9Rn9
q eð�1=2Þðx�lnÞ

T R�1
n ðx�lnÞ ð2Þ

with expectation values ln and covariance matrices Rn. Geome-
trical features of the Gaussians can be varied by parametrization
of the covariance matrices Rn using the eigenvalue decomposition
[18]. For our purpose, we assume shape, volume and orientation
of the Gaussians variable since the relevant activation areas
(ROIs) could be located shapeless and with different sizes across
the brain.

The parameters for GMM are estimated by means of the
Maximum Likelihood Estimation (MLE). This procedure consists
in adapting the parameters wn, ln and Rn in order to maximize
the likelihood of a mixture model with k components:

Lðh9xÞ ¼
YN
i ¼ 1

pðxi9yÞ ð3Þ

where h¼ fyng, for n¼1,y,k and x¼ fxig, for i¼1,y,N, which
corresponds to the probability to observe the given samples xi, if
independent and identically distributed random variables are
assumed [15,19].

In order to simplify formulation, we can suppose that data is
already grouped into a histogram with B bars at positions xj,
j¼ 1, . . . ,B, and with heights Ij, the maximum likelihood estima-
tion can be used in a modified way [20]. In addition, the gray-level
of each coordinate is taken into account with the parameter Ij. In
that case the total number of observations is given by N¼

PB
j ¼ 1 Ij

and the likelihood can be generalized to

Lðh9xÞ ¼
YB

j ¼ 1

½pðxj9yÞ�Ij ð4Þ

as there are Ij observations of data points at xj. That methodology
supposes a parcellation approach that uses Gaussians mixture
models for density estimation of the intensity profile of a
functional image.

In order to estimate the unknown parameters, the expecta-
tion-maximization (EM) algorithm is used [21,22]. Along the
same lines as shown, for instance, in [14] we can write down
the equations to update the unknown parameters wn, ln and Rn,
where the relations are only modified by a weight factor IðxjÞ:

wn ¼
1

N

XB

j ¼ 1

IðxjÞqnðxjÞ ð5Þ

ln ¼
1

wnN

XB

j ¼ 1

IðxjÞqnðxjÞxj ð6Þ

Rn ¼
1

wnN

XB

j ¼ 1

IðxjÞqnðxjÞðxj�lnÞðxj�lnÞ
T

ð7Þ

where the posterior probability, qnðxÞ, is defined by qnðxÞ ¼
wnfnðxÞ=pðxÞ. Starting with an initial guess for wn, ln and Rn the
EM algorithm recursively applies Eqs. (5)–(7) until convergence is



Fig. 3. Three-dimensional representation of the Gaussians obtained with the

GMM-based method. Each ellipsoid represents a Gaussian and its color is related

to the height of the Gaussian. Note that red ellipses match to regions that appear

in literature as representative regions of AD [23]. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
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reached, i.e. the changes in the log-likelihood are smaller than a
given threshold. Note that in this context, each xj is a vector with
the three coordinates of a voxel and x represents all voxels of a
PET image.

The core idea of this method is to perform space quantization
by populating it with Gaussian kernels whose linear combination
approximates image intensity. The resulting kernel locations act
as new ‘‘super-voxels’’ whose intensity is estimated by projecting
(integrating) the image onto the kernel function. For further
details about the arguments for applying GMM to functional
images, see [19].

2.2. Model selection

A key question for GMM approach is the number of Gaussians
used for modeling ROIs (parameter k in Eq. (1)). Note that all
parameters of the model are estimated thought the MLE algo-
rithm, but the number of Gaussian should be calculated manually.
If k is large, the model will represent the image very well, thus it
can be satisfactory reconstructed from the Gaussian. However, a
large number of Gaussians will result in large feature vectors (as
it is described in Section 2.3). Thus, we should find a balance
between size of the feature vectors and ability of reconstruction
(related with the model adjustment).

In order to determine this parameter, the reconstruction error,
Erec , has been estimated for several configurations. Results are
shown in Fig. 2:

Erec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1
ðIi�Irec

i Þ
2

n

r

Imax
ð8Þ

where Ii and Irec
i is the i-th voxel of the original image and

reconstructed image respectively, n is the number of voxels and
Imax is the maximum intensity.

According to Fig. 2 the reconstruction error tends to stabilize
when the number of Gaussians increases. In this work, we have
used a model with k¼64 Gaussians that leads to a good repre-
sentation of functional images (since the reconstruction error is
small) and still the dimensionality of the feature vectors is small
enough. This configuration has an additional advantage: It allows
initializing the model following a symmetric configuration
(4�4�4 Gaussians).

2.3. Feature extraction procedure

The goal of using GMM is to parcel or delimit the ROIs on a
functional image. Thus, the GMM procedure is applied only once
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Fig. 2. Reconstruction error of a functional image vs the number of Gaussians

used in the model.
over an image computed as the difference between controls and
AD images. The first step consists of creating an image

MM ¼MNC�MAD ð9Þ

where MNC and MAD are the average image of all normal controls
and AD images respectively. Then, the EM algorithm described
above is applied to MM to parcel the ROIs and model them as a set
of Gaussians (see Fig. 3). Finally, the feature vector, v¼ ðc1, . . . ,ckÞ,
for a given image is calculated from the Gaussian set obtained in
the previous step where each cn stands for the activation of the
entire image for the Gaussian n and is computed as

cn ¼ hn

XV

i ¼ 1

IðxiÞfnðxiÞ ð10Þ

where hn ¼wn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ39Rn9

q
and fn are the height and the density

of the Gaussian n respectively. And IðxiÞ is the intensity of the
voxel whose coordinates are xi. Therefore, the number of features
of an image is equal to the number of Gaussians (k parameter) of
the GMM. However, a further reduction of the dimensionality
may be performed by selecting only the Gaussians with higher
height that correspond to regions where there are more differ-
ences between controls and AD images. The model selection
criterion is chosen to be data-dependent since given a sufficient
number k of Gaussians, all relevant activation areas would be
included and/or modeled in them.
3. Feature extraction based on partial least squares

3.1. Partial least squares

PLS [24] is a statistical method for modeling relations between
sets of observed variables by means of latent variables. It comprises
regression and classification tasks as well as dimension reduction
techniques and modeling tools. The underlying assumption of all
PLS methods is that the observed data is generated by a system or
process which is driven by a small number of latent (not directly
observed or measured) variables. In its general form PLS creates
orthogonal score vectors (also called latent vectors or components)
by maximizing the covariance between different sets of variables.
PLS can be naturally extended to regression problems. Both the
predictor and predicted (response) variables are considered as a
block of variables. PLS extracts the score vectors which serve as a
new predictor representation and regresses the response variables
on these new predictors. PLS can be also applied as a discrimination



Fig. 4. Function diagram of the feature extraction method based on PLS. It

represents the process followed to calculate the score vector of the first image

of the database.

Table 1
Demographic details of the PET images used in this work. m and s stand of average

and standard deviation respectively.

Sex Age

# M F m s Range

NC 97 60 37 75.97 4.91 62–86

MCI 188 122 66 75.12 7.22 55–89

MCIc 23 18 5 73.97 7.35 57–85

AD 95 57 38 75.72 7.40 55–88
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tool and dimension reduction method similar to Principal Compo-
nent Analysis (PCA) [25,26]. After relevant latent vectors are
extracted, an appropriate classifier can be applied.

Mathematically, PLS is a linear algorithm for modeling the
relation between two data sets X �RN and Y �RM . After obser-
ving n data samples from each block of variables, PLS decomposes
the n�N matrix of zero-mean variables X and the n�M matrix of
zero-mean variables Y into the form:

X¼ TPT
þE ð11Þ

Y¼UQ T
þF ð12Þ

where the T, U are n� p matrices of the p extracted score vectors
(components, latent vectors), the N� p matrix P and the M� p

matrix Q represent matrices of loadings and the n�N matrix E
and the n�M matrix F are the matrices of residuals (or error
matrices). The x-scores in T are linear combinations of the
x-variables and can be considered as good ‘‘summaries’’ of the
x-variables. Similarly, the y-scores in U are linear combinations
of the y-variables and can be considered as good ‘‘summaries’’ of
them [27]. Several algorithms have been proposed in the litera-
ture to implement the PLS model. In this paper, we use the
SIMPLS algorithm [28].

The model structures of PLS and PCA are the same in the sense
that the data are first transformed into a set of a few intermediate
linear latent variables (components) and these new variables
are taken into account. Essentially, the difference between
PLS and PCA is that the former creates orthogonal weight vectors
by maximizing the covariance between elements in X and Y.
Thus, PLS not only considers the variance of the samples but
also considers the class labels. Fisher Discriminant Analysis
(FDA) is, in this way, similar to PLS. However, FDA has the
limitation that after dimensionality reduction, there are only c–1
meaningful latent variables, where c is the number of classes being
considered.
3.2. Feature extraction procedure

First, a binary mask is applied to each image in order to
remove the voxels that are not part of the brain. Only the voxels
that have an intensity above 50% of maximum intensity in the
image computed as the mean of all normal images, will be
considered. Applying this mask to each image leads to a signifi-
cant reduction of the input space. For example, for data used
in this work, the initial number of voxels per image (35�48�
40¼67 200) is reduced to 20 638.

Then, score PLS vectors are extracted (matrix T in Eq. (11)) and
used as features. In this context, the X matrix contains the image-
data: one row per each image and one column per each voxel,
i.e. n–1 rows (where n is the size of the database) and 20 638
columns. And Y is a matrix of size n–1�1 that contains the labels.
In order to avoid biased results, the PLS algorithm is run with
all but one image (and their labels) of the database. The score
vector for the remaining image is then computed through
the weight matrix obtained. This process is repeated for all
images of the database [7,3]. In other words, we applied a
leave-one-out methodology to the feature extraction method
with the purpose of avoiding that the label of a given image is
taken into account to compute its score vector. Fig. 4 shows a
diagram which describes this process. According to the PLS
definition, the weight vector has as many components as images
there are in the database minus two and this number will be the
size of the feature vectors. However, as same as in PCA, a further
reduction of the dimensionality is possible by truncating the
feature vectors.
4. Database description

4.1. ADNI database

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is
a cooperative agreement grant whose primary goal is to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid research-
ers and physicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.

Data used in the preparation of this article consist of 403
Fludeoxyglucose (18F-FDG) PET images collected from the ADNI
Laboratory on NeuroImaging (LONI, University of California,
Los Angeles). Participants enrollment was conditioned to some
eligibility criteria. General inclusion/exclusion criteria was based
on measures of disease severity, such as the Mini-Mental State
Exam (MMSE) or Clinical Dementia Rating (CDR) were as follows:
�
 NORMAL control subjects: MMSE scores between 24 and 30
(inclusive), CDR of 0, non-depressed, non MCI, and non-
demented. The age range of normal subjects will be roughly
matched to that of MCI and AD subjects. Therefore, there
should be minimal enrollment of normals under the age of 70.

�
 MCI subjects: MMSE scores between 24 and 30 (inclusive), a

memory complaint, have objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II, a CDR of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia.

�
 Mild AD: MMSE scores between 20 and 26 (inclusive), CDR

of 0.5 or 1.0, and meets NINCDS/ADRDA [29] criteria for
probable AD.

Therefore, FDG PET data was separated into three different
classes: Normal Control (NC), Mild Cognitive Impairment (MCI)
and Alzheimer’s Disease (AD) images (see Table 1 for details). In
addition, ADNI sites provide information about MCI who are stable
after 2 years follow-up, and those who have converted into AD, i.e.



Table 2
Statistical measures of performance of the proposed methods and the baseline

approaches (VAF and PCA) for group 1 (controls vs AD).

VAF PCA GMM PLS

Accuracy 80.21% 86.98% 87.50% 87.50% SVM lin

Specificity 81.44% 85.57% 86.60% 90.72%

Sensitivity 78.95% 88.42% 88.42% 84.21%

PL 3.8686 7.3899 7.4789 5.7457

NL 0.2351 0.1632 0.1516 0.1102

Accuracy 41.67% 85.42% 90.63% 86.46% SVM RBF

Specificity 51.55% 87.63% 90.72% 90.72%

Sensitivity 31.58% 83.16% 90.53% 82.11%

PL 0.7534 5.2030 9.5762 5.0697

NL 1.5344 0.1488 0.1025 0.1130

Table 3
Statistical measures of performance of the proposed methods and the baseline

approaches (VAF and PCA) for group 2 (controls and MCI vs MCI converters

and AD).

VAF PCA GMM PLS

Accuracy 68.24% 77.42% 78.91% 76.92% SVM lin

Specificity 78.60% 87.72% 90.88% 88.42%

Sensitivity 43.22% 52.54% 50.00% 49.15%

PL 1.3841 1.8484 1.8175 1.7389

NL 0.4952 0.2337 0.1825 0.2356

Accuracy 70.72% 78.16% 78.41% 76.18% SVM RBF

Specificity 100.0% 94.39% 90.88% 92.98%

Sensitivity – 38.98% 48.31% 35.59%

PL 1 1.5469 1.7580 1.4437

NL – 0.1440 0.1889 0.1972
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MCI converter (MCIc). However, it is worth noting that all images
used in this paper are the first capture for each patient. Subse-
quent captures were only used for labeling purposes.

4.2. Image preprocessing

The PET data were first preprocessed according to the proce-
dure described in http://adni.loni.ucla.edu/about-data-samples/
image-data/ in order to remove differences due the scanner used
for the acquisition. Subsequently, the images were normalized
through a general affine model, with 12 parameters using the
SPM software [6]. After the affine normalization, the resulting
image was registered using a more complex non-rigid spatial
transformation model. The nonlinear deformations were parame-
trized by a linear combination of the lowest-frequency compo-
nents of the three-dimensional cosine transform bases [30]. A
small-deformation approach was used, and regularization was by
the bending energy of the displacement field, ensuring that the
voxels in different FDG-PET images refer to the same anatomical
positions in the brains. After spatial normalization, an intensity
normalization was required in order to perform voxel intensity
comparisons between different subjects. The intensity of the
images was normalized to a value Imax, obtained averaging the
0.1% of the highest voxel intensities exceeding a threshold. The
threshold was fixed to the 10th bin intensity value of a 50-bins
intensity histogram, for discarding most low-intensity records
from outside-brain regions, and preventing image saturation.

Once the images were normalized, they were downsampled
with a factor of 2 yielding volumes of 35�48�40 voxels. Thus,
the computation time is reduced without loss of information
since marks of AD are not at voxel level but at higher structures
level (according to [23] those areas are the temporo-parietal
region and the posterior cingulate that are significantly greater
than the size of one voxel, especially with PET images where
resolution is often higher than other image modalities).
5. Experiments and results

We have developed several CAD systems using the feature
extraction methods described above and two SVM classifiers,2

linear and nonlinear (RBF kernel with parameter s¼ 5). Since our
purpose is to distinguish between healthy subjects and AD
patients, first we have trained the CAD systems with only controls
and AD images (group 1). Second, we have also used MCI images
by labeling MCI non-converters as controls and MCI converters
as AD [31] (group 2). Thus, we can measure the ability of the
systems to detect cases of dementia that will progress to AD.

Tables 2 and 3 show the statistical measures obtained using
GMM and PLS. Those tables also show the performance of two
existing approaches in the literature, i.e. VAF and PCA. VAF has
been implemented as shown in [7] whereas the PCA method
consists of using score vectors as feature vectors in a similar way
as in [3]. Performance of the different feature extraction methods
has been calculated via a k-fold cross-validation methodology
(with k¼5). Sensitivity and specificity of each test are defined as:

Sensitivity¼
TP

TPþFN
, Specificity¼

TN

TNþFP

where TP, TN, FP and FN are the number of true positives, true
negatives, false positives and false negatives respectively. These
probabilities reveal the ability to detect NOR/AD patterns thus,
the best CAD system is the one that achieves the best trade-off
2 We used the SVM implementation included in the Bioinformatics Toolbox

of Matlab.
between specificity and sensitivity. Since the number of samples
in the second experiment (group 2) is unbalanced, positive
likelihood (Sensitivity=ð1�SpecificityÞ) and negative likelihood
(ð1�SensitivityÞ=Specificity) have been estimated in order to avoid
improper assumptions. These measures are prevalence indepen-
dent, i.e. they do not depend on the ratio of the classes.

The accuracy of the different approaches depend on the size of
the feature vector. The maximum size of the feature vectors is the
number of Gaussian for the GMM-based method and the number
of images there are in database minus two, for PLS-based algo-
rithm. However, this number may be reduced by selecting only
the most important Gaussians/components (i.e. Gaussians with
higher height or the first PLS components). Fig. 5 shows the
accuracy rates achieved with both approaches in function of
number of Gaussians/components selected and compares them
with the performance obtained using PCA and VAF.
6. Discussion

As it is shown in Section 5, the two methods analyzed in this
work are valid approaches to develop CAD systems for AD and
achieve better accuracy, sensitivity and specificity than previous
approaches. The success rate achieved in the automatic diagnosis
exceeds 90% for group 1. When MCI images are considered, the
success rate decreases significantly due to the high variability of the
MCI pattern (see Fig. 6). Despite that fact the GMM and PLS-based
methods improve the baseline. The relevance of the classification
results obtained is also confirmed by the ROC curves shown in Fig. 7
that measures the trade-off between sensitivity and specificity for
varying the number of Gaussians of the PLS components.

It is worth noting that CAD systems are reproducing current
medical knowledge since they have been trained with samples

http://adni.loni.ucla.edu/about-data-samples/image-data/
http://adni.loni.ucla.edu/about-data-samples/image-data/
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Fig. 5. Success rates obtained with the developed CAD systems in function of the number of components used (number of Gaussian for GMM-based method and number of

components for PCA/PLS-based methods). Left column: CAD systems with a linear classifier. Right column: CAD systems with a nonlinear classifier. Top row: Experiments

for data of group 1. Bottom row: Experiments for data of group 2.
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labeled by physicians. For this reason, statistical measures
reported in this paper are an estimation about how a trained
system is able to reproduce a medical diagnosis performed by
experts. Therefore, some possible errors in the labeling process
could render the classification task more difficult, especially
considering that the labels were assigned based on the scores
obtained by patients in cognitive tests (as MMSE and CDR) and
they do not consider the information provided by the PET images
for the database used.

In general, the GMM-based method yields better results
than the PLS-based one. Parcellation of ROIs using GMM has
proven to be an effective approach to extract features. In addition,
this method has the advantage that the size of the features vectors
does not depend on the number of samples of the database. On the
other hand, PLS-based method performs better than PCA approach
and execution time is lower than when GMM model.

In short, the feature extraction approaches proposed in this
paper achieve good classification performance when a linear
classifier is used. Furthermore, nonlinear classifiers also performs
accurately, mainly when the GMM method is used. Generally,
nonlinear classifiers require more samples or smaller feature
vectors than the linear ones in order to yield good classification
results. In our case, both experiments use the same number of
samples, however, the GMM approach provides smaller feature
vectors than PLS (specially, 64 vs 192, before pruning) and
therefore, it performs better with nonlinear classifiers.
7. Conclusions

In this work, two features extraction methods to improve the
classification of PET images to diagnosing Alzheimer’s disease are
presented. The proposed methodologies are two multivariate
approaches which allow to reduce the dimension of the feature
vector in order to surmount the small-size problem which arises
in classification problems when the dimension of the feature
vector is very high compared to the number of available samples.
The first approach uses Gaussian Mixture Model in order to extract
the most discriminant regions from PET images. The second
method uses score vectors obtained through a Partial Least
Squares algorithm as features. Score vectors are chosen following
a criterion of maximum covariance between images and labels.

The GMM-based method first computes an image with differ-
ences between controls and AD images. Then, it models this
image by means of a set Gaussian using the well-known EM
algorithm. The Gaussians obtained represent the ROIs to distin-
guish normal and AD images and are used to calculate features.
Finally, the feature vector for a given image contains a measure of
the activation of the whole image for each Gaussian. Thus, we get
as many features as Gaussians have been defined. On the other
hand, the PLS-based method uses score vectors as features. This
method performs an initial reduction of the input space by
applying an intensity mask that discard low-intensity voxels.
Both methods have been tested with two classifiers based on
SVM, one linear and other nonlinear. The resulting CAD systems
were trained using PET images from the ADNI database and the
statistical performance of the methods were estimated using a
k-fold cross-validation methodology. The presented methods
yield peak accuracy rates of 90% when we distinguish between
controls and AD images and, in general, outperform previous
approaches such as the ones based on VAF or PCA [3].
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